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We consider single-humped symmetric one-dimensional maps generating fully 
developed chaotic iterations specified by the property that on the attractor the 
mapping is everywhere two to one. To calculate the probability distribution 
function, and in turn the Lyapunov exponent and the correlation function, a 
perturbation expansion is developed for the invariant measure. Besides deriving 
some general results, we treat several examples in detail and compare our 
theoretical results with recent numerical ones. Furthermore, a necessary condi- 
tion is deduced for the probability distribution function to be symmetric and an 
effective functional iteration method for the measure is introduced for numerical 
purposes. 

KEY WORDS: Chaos; probability distribution; perturbation theory; 
Lyapunov exponent; correlation function. 

1. INTRODUCTION AND SUMMARY 

In  recent years there has been considerable interest in non l inear  processes 
exhibit ing chaotic behavior,  especially in one-d imens ional  noninver t ib le  

maps. Such discrete models are related to several p h e n o m e n a  as turbulence,  
irregular behavior  in electronic circuits, chemical  reactions, optical systems, 

etc. In  particular,  s ingle-humped maps, which exhibit  a very rich variety of 
behavior  when changing a control  parameter,  have often provided a suit- 

I Institute for Theoretical Physics, Eotv6s University, H-1445 Budapest, P.O.B. 327, Hungary. 
2 Central Research Institute for Physics, H-1525 Budapest, P.O.B: 49, Hungary; Institute for 

Theoretical Physics, E6tvgs University, Budapest, Hungary (permanent address); and 
Theoretische Physik, Universit/it des Saarlandes, D-66 Saarbriieken, FRG (present address). 

451 
0022-4715/84/0200-0451503.50/0 �9 1984 Plenum Publishing Corporation 



452 Gyorgyi and Szepfalus) 

Xn+ f 

§  =Xn 

x 1 

Fig. 1. Single-humped map leading to fully developed chaotic dynamics. 

able framework for modeling real systems. (See Refs. 1-4, which contain 
extensive further references.) 

We consider one-dimensional (1D) maps with a single extremal point 
and the property f(0) = f ( f ( ~ ) )  = 0 [see Fig. 1 and for further specifications 
of f ( x )  the first paragraph of Section 2]. The iteration produced by such 
maps is chaotic for almost all initial values on the interval which is mapped 
onto itself. (1,5-7) The purpose of the present paper is the examination of this 
chaotic state, which we call fully developed chaos. It can be characterized 
by the property that the attractor can be decomposed into two intervals, 
each of which is mapped to the whole attractor in one step. A fully 
developed chaotic attractor can be observed in the logistic map f ( x )  
= rx(1 - x )  when the control parameter r equals four. More generally, it is 
the final stage of the evolution of the attractor (from fixed point through 
periodic orbits to chaotic attractors) of a 1D single-humped map. Fully 
developed chaos can also be found in parameter-controlled maps at the 
band merging points and also at the crisis points (1'5'8 11) if one considers a 
suitable iterate of the original map. Consequently, our investigation is 
relevant for a large class of maps. 

Lyapunov characteristic exponent (LCE) and the correlation function 
are widely used quantities for characterizing iterations. It can be shown that 
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if the probability distribution function belonging to a symmetric 3 map is 
also symmetric, which we call the doubly symmetric case, the process is 
delta-correlated(5! and the value of the LCE equals ln2. This is the case, 
e.g., for the logistic map mentioned above, while according to numerical 
experiments on other symmetric maps close to the logistic one exhibiting 
fully developed chaos, the LCE and the correlation function deviate slightly 
from those cited above. (5'1~ It is appealing to suppose that this 
phenomenon is due to the nonsymmetric character of the probability 
distribution functions belonging to such maps. 

In this paper we derive a necessary condition for a symmetric map to 
be a doubly symmetric one. Namely, if the map has a kth-order maximum 
its derivative at the origin should be equal to 2 k. It is then obvious that 
doubly symmetric maps represent exceptional cases and there should be 
many symmetric maps exhibiting fully developed chaos in the vicinity of a 
doubly symmetric one, which do not have symmetric probability distribu- 
tions (and consequently are not conjugate (5) to doubly symmetric maps). 
To demonstrate this we introduce a functional iteration method which 
turns out to be very effective numerically and provides results of high 
accuracy. 

Our main interest in this paper is to study the change of the behavior 
of symmetric maps exhibiting fully developed chaos when a parameter, 
measuring the deviation from a particular map with known properties, is 
continuously changed. For this purpose we develop a perturbative method 
based on the equation for the invariant measure. We derive some general 
results and we treat some examples in detail. The main results are as 
follows. 

We consider only symmetric maps and suppose that both the unper- 
turbed and the perturbed maps exhibit fully developed chaos. It is shown 
that a small perturbation of a doubly symmetric map fo(x) can be split in 
such a w a y  that a part of it has the form eJ( f0(x)) ,  J ( z ) =  J ( 1 - z )  
(where c is a small parameter characterizing the strength of the per- 
turbation), and the rest can be related to fo(X) by conjugation [to ~(e)  
accuracy]. The perturbation e J ( f0 (x ) )  gives the leading order correction 
-ed[Po(x)J(x)]/dx to the unperturbed probability distribution Po(x). 
This correction term has an odd symmetry as contrasted with the even 
symmetry of Po(x) and of the correction coming from conjugation. (5~ It is 
found that the LCE has no correction of eY(c) and that there exists a 
negative upper bound, namely, - 2 e 2 P ~ ( I / 2 ) J 2 ( 1 / 2 )  for its second-order 

3 The symmetry properties often discussed throughout the paper are always to be understood 
with respect to the center of the attractor, which will be the point 1/2 in our coordinate 
system. 
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correction. This is in accord with the expectation that a doubly symmetric 
map has the maximum value for the LCE. (t1'13'17) The two parts of the 
perturbation play quite different roles in the correlation function of two 
orbits separated by ~- iterations. The perturbation eJ ( f0 (x ) )  gives correc- 
tions for ~-/> 1 but no correction for ~" = 0 to ~(e)  in contrast to conjuga- 
tion, which gives correction only at ~- = 0. 

In all of our examples the unperturbed map is the logistic parabola in 
the fully developed chaotic state, i.e., fo(x)= 1 -  ( 2 x -  1) 2. The main 
family of maps for which we have applied our procedure consists of 
polynomials of ( 2 x -  l) 2. We have treated in detail the fourth degree 
polynomial map f(x) = 1 - (1 - e)(2x - 1) 2 - e(2x - 1) 4 and have found 
- e2/16 + ~ (e  3) as a correction to the unperturbed LCE. The most nota- 
ble finding regarding the correlation function of the quartic map is that to 
~q(e) the correlation extends only to one iteration and to ~ ( e  2) to two 
iterations. Investigations to first order in perturbation theory have been 
extended to polynomials of higher degree. 

We have examined fully developed chaotic behavior at the 1 ~ 2 and 
2-->4 band splitting points and at the crisis point where the window 
associated with the period-three orbit ends. Our theoretical results agree 
well with numerical ones. (t0,11,18) We use also ou r  results for the polynomial 
maps to deduce an approximate theoretical value of the LCE for the 
universal chaos function, i.e., for the amplitude in the Huberman-Rudnick  
scaling law. (j9'12~ 

The paper is organized as follows. In Section 2 the general framework 
of our investigations is set up. In Section 3 a symmetry condition is 
established for the distribution function of symmetric maps. Section 4 is 
devoted to the perturbation theory and to its application to polynomial 
maps. The first terms of the series expansion for the LCE and the correla- 
tion function are calculated in Section 5. We outline an iterative method for 
the measure in Section 6 and compare numerical and perturbation theoreti- 
cal results. The map 1 - 12x - II 2(1+c) is considered in Section 7. 

2. FULLY DEVELOPED CHAOS 

In the present work we focus our attention on maps of the interval 
[0, 1] onto itself 

Xn+l = f(x,) (2.1) 

where f ( 0 ) = f ( 1 ) =  0 and f(x) is supposed to have a single kth-order 
maximum at ~, where f ( s  1 (see Fig. 1). Further specifications under- 
stood in the definition of f(x) are that it is differentiable, except possibly at 
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2, its slope at x = 0 is greater than one, i.e., f ' (0) > 1, 4 and it is monotoni- 
cally increasing and decreasing for x < 2 and x > 2, respectively. We 
assume that the map (2.1) does not have any stable periodic orbit, but 
exibits chaotic behavior, which is fully developed in the sense that the 
iterations starting from almost any initial value fill out almost the whole 
interval (0, 1). This is the case, for example, if the map (2.1) is everywhere 
expanding or if 1/[Jf'(x)l] 1/2 is a convex function, which means that its 
Schwarzian derivative is negative. (1,6,7) 

An important feature of such chaotic iterations is ergodicity, which 
means, that for almost any initial value the average of a function h (x) can 
be expressed as 

N 

lim 1 foolPf u~oo N ~ h(x,)= (x)h(x)dx (2.2) 
n = 0  

where Pf(x) is the stationary probability distribution function, describing 
the iteration (2.1). Thus 

folh(x)Pf(x)dx = fo'h(f(x))ef(x)dx (2.3) 

This equation can be considered as the requirement for the stationarity or 
the invariance of the probability distribution function. A differential form 
of the invariance condition is also known, namely, 

Pf(y)dy = ef(xo)dx o + Pf(xl)dX 1 (2.4) 

where f (xo)=f(xl)=y,  and the differentials are taken so that dy= 
If'(xo)l dxo =-If'(Xl)l dXl (see, e.g., Ref. 17). Equation (2.4) clearly demon- 
strates the stationarity: if points are distributed according to Pf(x) then the 
distribution does not change after iterations. 

Now we propose an alternative expression of the invariance by inte- 
grating both sides of (2.4) 

~:(y) = I + l~/( f~ - I (y)) - Ixf( f~-1(y)) (2.5) 

where 

= "JoYPT(X) dx (2.6) ~I(Y) 
is the invariant measure:  Furthermore f t - l ( y )  < 2 and fu- l (y)  > 2 denote 
the lower and upper branches of the inverse of the function f(x), respec- 

4 The derivative will be denoted by a prime throughout this paper. 
5 It is, of course, a probabilistic measure absolutely continuous with respect to the Lebesgue 

measure. Since we will be interested only in such measures, these properties will be 
understood in the following. 
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Fig. 2. The upper and lower branches of the inverse of a single,humped map generating fully 
developed chaos. 

tively (see Fig. 2). Equation (2.5) is our basic relation for both perturbative 
and numerical considerations. 

The LCE characterizing ergodic iterations is 

~kf----- 1 i fo Pf(x)lnlf (x)[dx (2.7) 

If the LCE is positive, nearby trajectories diverge with the average charac- 
teristic time i/Xf, so the LCE measures the sensitive dependence on the 
initial condition. 

When a map exhibiting fully developed chaos and the corresponding 
probability distribution function are both symmetric we will call the map 
doubly symmetric. Now we show that for a doubly symmetric f(x), Xf 
= ln2. In other words, the degree of irregularity is the same for such 
processes. Using the invariance condition (2.3) we have 

Xf = ~o]Pf(x)lnlf'(x)[ dx 

= ~o'Pf(x)ln] Pf(f(x)) df/Pf(x) dxl dx 
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It is obvious from (2.4) that if f(x) is doubly symmetric 

Pf(f(x)) Idf(x)l = 2Pf(x) dx 
and the above statement follows. 

A further important quantity characterizing chaotic processes is the 
correlation function defined as 

Cf(z)= fol(X - ~)I f(~)(x) - ~]Pf(x)dx, ~= fo'XPf(x)dx (2.8) 

where f(~)(x) is the Tth iterate of f(x) [ f (~  x]. Another consequence 
of the double symmetry is the noncorrelated behavior of subsequent 
iterations. As can be easily seen in this case (5) 

cs(  ) = c(0)8 0 

where 6T0 = 1 if ~- = 0 and it is zero elsewhere. 
Finally we cite some properties of conjugation (5) needed in the follow- 

ing. The map g(x) is conjugate t o f ( x )  if there exists a continuous, smooth, 
invertible function u(x), for which 

g(x) = u(f(u-~(x)))  (2.9) 

The probability distribution for the map g(x) can be expressed as 

du-l(x)  
Pg(x) = Pf(u- ' (x))  dx (2.10) 

An important feature of conjugation is related to the problem of symmetry: 
if f(x) is a doubly symmetric map,  then every symmetric map conjugate to 
f(x) is also a doubly symmetric one. (5) 

3. ASYMPTOTIC BEHAVIOR OF THE INVARIANT MEASURE. 
A SYMMETRY CONDITION 

Let us consider the asymptotic behavior of the invariant measure of 
symmetric maps of type (2.1) near the points x = 0 and x = 1. Equation 
(2.5) can be written now as 

izf(f(x)) = 1 + p o f ( x )  - /~f(1 -- x), 0 < x < 1/2 (3.1) 

(For 1/2 < x ~< 1 the signs of the second and third term on the right-hand 
side change.) Assume the map f (y)  has a maximum of kth order, i.e., for 
y , ~ 2 =  1/2 the map takes the form f ( y ) ~ l - a l y - 1 / 2 1  k. Denoting 
aly - 1/2[ k by x and applying (3.1) and (2.6) we get 

~/(1 - x) ,~ 1 - 2Pf(1/2)(x/a) l/k, x << 1 (3.2) 
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For  a measure not  differentiable at 2 = 1//2 

2Pu(1 /2)  =/~) (1//2 + 0) + it) (1//2 - 0) 

is taken. 
Next  we iterate the point  1 - x. By writing 

/ ( 1 - x ) = f ( x ) ~ c x J ,  x < < l  (3.3) 

and assuming that the asymptotic  form of the invariant measure is 

~f(X) ~ bx t, x << 1 (3.4) 

we get by using (3.1), (3.2), (3.3), and (3.4) 

bctx lj ~ bx '  + 2 P f ( 1 / 2 ) ( x / / a )  1/~, x << 1 (3.5) 

The dominant  term on the right-hand-side must  asymptotically equal the 
left-hand-side. Compar ing both the exponents and the amplitudes f o r j  < 1 
one has 

l =  l // kj (3.6a) 

and 

b -  2eA1/2) 
c I/(kj) a I/~ (3.6b) 

I f j  = 1 one should distinguish the cases c > 1 and c = 1. In the former one 

l =  1/  k (3,7a) 

b = 2Pu(1 /2)  
(3.7b) al/k(c 1 / k -  1) 

Note  that f o r j  = l, c is the initial slope, c = f ' (0).  If f ' ( 0 ) =  l, however, we 
only know that 

l < 1 / k  (3.8) 

and b cannot  be determined at this stage. Finally, j > 1, o r j  = 1 with c < 1 
are not  allowed: in these cases the map would not  produce  fully developed 
chaos. 

By means of the above results a symmetry  condit ion can easily be 
deduced for the probabil i ty distribution funct ion by using (2.6). Namely,  
by comparing (3.2) with (3.4), (3.6), (3.7), (3.8) we see that its asymptot ic  
behavior  near  0 and 1 is the same only if 

j = 1, f ' (0 )  = 2 k (3.9) 

This is, of course, a necessary condit ion for the odd  symmetry  of the 
invariant measure. The  result (3.9) has been derived under  the conditions 
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tha t  PI( I /2 )  and  Pf - l (1 /2 )  are  finite, which is the typical  case. The  
genera l iza t ion  is s t ra igh t forward  bu t  is not  cons idered  here. 

Consider ,  for  example ,  the m a p  

f ( x )  -- 1 - l1 - 2xl k (3.10) 

which for k > 1 / 2  exhibi ts  fully deve loped  chaos.  6 The  symmet ry  condi t ion  
(3.9) is fulfi l led by  (3.10) only  for the piecewise l inear  m a p  (k  = 1) and  for 
k --- 2, in which case (3.10) is the logistic m a p  in the fully deve loped  chaot ic  
state. 

4, PERTURBATION THEORY AND ITS APPLICATION TO 
POLYNOMIAL MAPS 

Star t ing f rom equa t ion  (2.5) for the invar ian t  measure  we develop a 
pe r tu rba t ive  a p p r o a c h  to the p robab i l i t y  d is t r ibut ion  funct ion for symmet-  
ric maps .  7 

Let  us cons ider  the symmet r ic  m a p  f(e ,  x), where e is a small  pa r a me -  
ter. Assume  that  the p robab i l i t y  d is t r ibut ion  funct ion  Po(x) belonging  to 
the ze ro th -order  m a p  f(O, x)  -~ fo(x) is known.  Fur the rmore ,  we denote  the 
pe r tu rbed  invar ian t  measure  b y / ~ ( e , x ) ,  whereas /~(0 ,  x)--=/~0(x) and  ~ ; (x)  
= Po(x). As shown in Sect ion 2/~(c,  x)  can  be de te rmined  f rom 

~ ( ~ , f ( e , x ) ) = l + l ~ ( e , x ) - I * ( c , l - x ) ,  0 < x < l / 2  (4.1) 

W e  consider  the maps  

f ( e , x )  = f0(x)  = efl(x ) + e2f2(x) + . . .  

f k (x )  = fk(1 - x )  (4.2) 

fk(O) = f k (1 /2 )  = O, k >1 1 

the measure  and  the p robab i l i t y  d is t r ibut ion  can  be  and  suppose  that  
e x p a n d e d  as 

= t 0 ( x )  + +  2 2(x) + . . .  
(4.3) 

/*k(O) =/zk(1 ) = 0, k />  1 

P ( c , x )  = Ol~(~,x)/Ox = Po(x) + eP, (x)  + eZP2(x) + - . -  (4.4) 

6 There exists an invariant measure for this map when k > 1/2 which is unique and ergodic. 
Namely, in the region 1/2 < k < 1 the map is everywhere expanding and then the theorem 
by Li and Yorke (see, e.g., Ref. 1) applies. For k > 1 the map has a negative Schwarzian 
derivative and fulfills also the other conditions under which Misiurewicz proved the existence 
of an absolutely continuous invariant measure. (6,7) For k = 1/2 see Section 7. 

7 The generalization of the perturbation theory for nonsymmetric perturbations is, in principle, 
straightforward. Since it is not needed in the present work we will not deal with this more 
general case. 
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Further assuming that t&(f(e ,x)) ,  with f ( c , x )  given by (4.2), can also be 
expanded in powers of c, Eq. (4.1) yields 

IZk(fo(X)) = Fk(fo(X)) + I&(X) -- /&(1 -- X), 0 < x 4 1/2 (4.5) 

Here Fo(x ) -- l and for k >/ 1 Fk(x ) is given in terms off0, f l , . . .  ,fk and 
/~o,/~1, �9 : �9 1 in the Appendix. 

It is easy to show that if the measure/~0(x) is unique for the map fo(x), 
which is, of course, our basic assumption, then the solution of (4.5), if it 
exists, is also unique. Suppose that/~o,/~l, �9 �9 �9 /~k-i are unique; then Fk(X ) 
is unique, too. If (4.5) has two solutions then their difference A/z(x) satisfies 
the equation 

A/z(f0(x)) = A/~(x) - A/~(1 - x), 0 < x < 1/2 (4.6) 

From the uniqueness of the solution of (4.5) for k = 0 follows, however, 
that (4.6) has the only solution A/z(x) = 0. This way, the uniqueness can be 
proven for all indices k/> 1. 

According to (A.3) the equation for the first-order correction /Zl(X ) 
takes the form 

/~l(f0(x)) = - f l ( x ) P o ( f o ( x ) )  +/~l(X) - /x,(1 - x), 0 < x < 1/2 (4.7) 

It is useful to compare Eq. (4.7) with the result of conjugation to fo(X) 
with a conjugating function that deviates from the identity by a term ot 
g~ (e), i.e., 

u(x) = x +  s(x) + (4.8) 

;~f~(x) = - ~ ( 1  - x) (4.9) 

The symmetry property of ~ ( x )  follows from the requirement tha! 
both the initial and the conjugate maps be symmetric. By writing the 
conjugated function and the corresponding probability distribution as 

fc(e,  x) = f0(x) + ef t (x)  + #(c 2) (4.10) 

and 

PC(e,x)  = Po(x) + eP~(x) + ~(r (4.11) 

respectively, we obtain by taking into account Eqs. (2.9), (2.10), (4.8), (4.9), 
(4.10), and (4.11) 

f ; ( x )  = ~f~(fo(X)) - JC~(x)f~(x) (4.12) 

and 

P~(x) = - [ ~7z~(x)Po(x) l '  (4.13) 
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Equation (4.13) yields for the measure 

= t 0 ( x )  + + 2) 

with 

(4.14) 

lz~(x) = - S ( x ) P o ( x  ) (4.15) 

On the other hand, looking for a solution of Eq. (4.7) in the form of (4.15), 
(4.9) we arrive at (4.12) as a condition for f l (x  ) by using Eq. (2.4) for Po(x). 

We proceed by exploiting the fact that a general solution can be 
separated in the following way: 

I.tl(X) = - Po(x)J(x)  - P o ( x ) S ( x )  (4.16) 

~ (x )  = J (1  - x) (4.17) 

and ~ ( x )  has the odd symmetry (4.9). For a given /~l(x) and Po(x) the 
functions J ( x )  and ~ZF(x) are uniquely specified by these equations. We 
define now f~(x) by Eq. (4.12), and f~C(x) by 

f~(x) =/~'C(x) + f ; ( x )  (4.18) 

Substituting (4.16), (4.17), (4.18), (4.12) into Eq. (4.7) and using Eq. (2.4) for 
Po(x) we obtain 

Po(x) - P0(1 - x) 
f~C(x) = J ( fo (x ) )  - J ( x ) f~ (x )  Po(x) ~ P0(1 x) (4.19) 

If Po(x) is symmetric, which is the most important case concerning 
applications, it follows that 

FC(x)  = J ( fo (x ) )  (4.20) 

It means that in this case there should always exist a splitting (4.18) for a 
perturbation f l (x  ) in such a way that to c~(c)fo(x) + r is conjugate to 
fo(x) and f~C(x) has the properties specified by (4.20), (4.17). The assump- 
tion leading to this conclusion is that (4.7) has a solution. 

T o  use J and ~ for specifying the perturbation will be often 
advantageous in the following. Here we mention as an example that the 
change in the average value of the quantity A (x), 

8A = f 0 1 A ( x ) [ P ( x ) -  Po(x)]dx  

can be expressed to ~Y(e) as 

614 = e fo 'A ' (x)[  5 ( x )  + W ( x )  ]Po(x)dx 

We can consider now the perturbation expansion for the polynomial 
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maps 

f ( x )  = fo(x)  + ef](x) 

fo(x) = 1 - (1 - 2x) 2= 4x(1 - x) 

k~ 
i= I  i=1 

(4.21) 

(4.22) 

(4.23) 

Note that f l ( x )  contains the factor ( 1 -  2x)2[1- ( 1 -  2x) 2] = f0(x)[1-  
f0(x)] due to the boundary conditions (4.2). The unperturbed map is the 
logistic parabola in the fully developed chaotic state, which has the invari- 
ant measure (2~ 

/~0(x) = (2//~r)arcsim/x- (4.24) 

and the probability distribution function 

eo(x  ) = 1 
~r[x(1 - x ) l  1/2 (4.25) 

In the following the most important case will be the quartic map 

f ( x )  = 1 - (1 - e)(1 - 2x) 2 -  e(1 - 2x) 4 (4.26) 

corresponding to the choice ~ = 0/1 = --0/2, 0/i = 0, i > 3. It can easily be 
shown that the quartic map has a negative Schwarzian derivative and that 
its fixed point at x = 0 is unstable for e > -3 / /4 .  It also satisfies the other 
conditions in the range -3 / /4  < e < 1 sufficient to have an absolutely 
continuous invariant measure according to the results by Misiurewicz; this 
measure is unique, ergodic, and its support is the [0, 1] interval. (]'6'7) The 
boundaries in the parameter space within which these conditions are met 
will not be given here for the higher-degree polynomial maps. In our 
applications all the parameters ai are small, in which case they are obvi- 
ously fulfilled. 

Using the fact that according to (4.22), (4.25) Po(x)= 2Po(fo(x)) 
I1  - 2xl, the solution of (4.7), with f](x)  given by (4.23), can easily be found 
in the form/~](x) = vj(n; (1 -2x ) )Po(x  ). Here and in (4.31) below v(q; z) 
denotes a qth-degree polynomial of z satisfying v(q; 1) = v(q; - 1) = 0, i.e., 
containing the factor (1 - z2 ) .  Separating v] into its symmetric and anti- 
symmetric parts we obtain the functions J and ~ defined by (4.16), (4.17), 
and (4.9) as 

k 
J ( f ; x )  = x(1 - x) 2 f i x i (  1 - x) i (4.27) 

i=0  
1 

c:~a('O; X) ~--- (1 --  2X) 2 • i x i (  1 --  X )  i (4 .28)  
i=1 
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Here  k = l = (n - 2 ) / 2  if n is even and  k = (n - 3) /2 ,  l = (n - 1) /2  if n is 
odd. The  paramete rs  fi, ~/i can  be expressed in terms of 0 / i -  s. As an 
example  we give them for n = 8 

0/8 = E~3 (4.29a) 

0/7 = -2e ( r /3  + 2~3) (4.29b) 

0/6 = ' ( -  (2 + 6f3 + 77/3) (4.29c) 

0/5 = e(3~2 - 4~3 + 2~/2 - 9v/3) (4.29d) 

0/4 = s  - -  3~2 + ~3 - -  5772 -1- 81~/3/16) (4.29e) 

0/3 = c ( - -2~ l  + ~2 -- 2~/1 + 15~/2/4 -- 197/3/16) (4.29f) 

0/2 ~--" ( [ ( - - i f 0 - I ' -  ffl + 4T/1 - v/2/2 + 3~3/16)  (4.29g) 
a~ = e ( f  o - 2~ h - ~2/4  - ~3/16)  (4.29h) 

Substi tuting (4.21)-(4.25), (4.16), (4.27), and  (4.28) into (A.3) and using 
the fact, that  P(~(x)= - P o ( x ) ( 1  - 2 x ) [ x ( 1  - x ) ] - 1 / 2  we arrive at  

F2(fo(x)) = - E2(2n - 1; (1 - 2x)2)Po(fo(x)) (4.30) 

where E(q;z)  denotes  a qth degree po lynomia l  of z satisfying E ( q ; 0 )  
= E(q; 1) = 0, i.e., containing a factor  z(z - 1). Then  we can solve Eq. 
(4.5) for/~2(x) in the same way as we have  done  for/~l(x);  consequent ly  the 
solution has the fo rm 

~L2(X ) ~--" v2(2n - 1; (1 - 2x))Po(x ) (4.31) 

In  the case of the quart ic  m a p  (4.26) we obtain  for the second-order  
correct ion for the measure  

1 ~ 2 ( x ) = 3 [ 1 - ( 1 - 2 x ) 2 ] [ l + ( l - 2 x ) l P o ( x )  (4.32) 

and  for the probabi l i ty  distr ibution funct ion using (4.25), (4.16), (4.27)- 
(4.29) 

P ( x ) =  1 +  1 23 ( l _ 5 x + 4 x 2 )  + ~(e3)  
~ [ X ( 1  

(4.33) 

Not ice  that  the initial slope of the quart ic  m a p  is 4(1 + e) and  consequent ly  
the s y m m e t r y  condit ion (3.9) is satisfied only for  e = 0. 

It  can be shown that  for po lynomia l  maps  also the higher-order  
corrections to the measure  have the fo rm of a p roduc t  of Po(x) with a 
po lynomia l  of ( 1 -  2x). We  are not  going to discuss these higher-order  
corrections in the present  paper ,  but  turn to the evaluat ion of the low-order  
corrections to the L C E  and to the correlat ion function. 
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5. THE LYAPUNOV CHARACTERISTIC EXPONENT AND THE 
CORRELATION FUNCTION 

Let us consider first the perturbation expansion for the LCE. W~ 
substitute (4.2) and (4.4) into (2.7) and assume that the resulting expressior 
can be expanded as 

)t(E) -~- )tO -'l- E)tl -'l- E2X 2 -it- �9 �9 �9 (5.11 

)t o = s dx (5.2  

1 
' X  t X  )tl:s Pl(x)lnlf~(x)idx+L1Po(x)[fl( )/f;( )]dx (5.3' 

Taking into account (4.16), (4.18), (4.12), (4.19) the terms in (5.3) contain 
ing ~ cancel, which corresponds to the fact that conjugation does nol 
change the LCE, and )tl can be expressed in terms of J as 

)ti = s 176176  ] ' 
- Po(x)+ e0(1 x) 5(x)e~ (5.4' 

which yields )tl = 0 in the case of a symmetric Po(x). 
Moreover, we can obtain a useful negative upper limit for the second. 

order correction )t2 when the zeroth-order map exhibits double symmetry 
For this purpose we start from the inequality (~3) for the LCE 

)t < L (5.5,, 

where L for maps generating fully developed chaos tal~es the form 

L = - m l n m - ( 1  - M)ln(1 - M)  (5.6) 

Here 

M = "Jol/2p(x) dx =/*(1/2)  (5.7) 

asymmetry number of the probability distribution may be called the 
function. Note that  for symmetric distribution functions M = 1/2. Using 
(4.16), (4.17), (4.9) and / to ( l /2  ) = 1/2 we get 

L ( E )  = i n 2  -- E 2 2 p 2 ( 1 / 2 ) s  -t- ~ ( E  3) (5 .8)  

Taking into account that )to = in 2 for a symmetric Po(x) (see Section 2) we 
obtain 

)t2 < - 2Po2( 1 / 2 ) j  2(1/2) (5.9) 

A negative upper limit for )t2 is in accord with the fact that In 2 represent.< 
the possible maximum value for the LCE. (13) 
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Now we calculate the corrections to the LCE in the case of the quartic 
map (4.26). Here according to (5.4) 2~1 = 0 and for the second-order 
correction we get 

1 1 1 x.=fo ~.(x)lnlf;(x)lax- g fo .o(X)[ i((x)lf;(x) ]'d. 
1 t ; + fo P'(s)fi(x)lf;(x)ds= 1/16 (5.10) 

where (4.26) and (4.33) have been used. Hence, the expansion of the LCE 
starts as 

E 2 X(e) = l n 2 -  ~ "l" ~(IE 3) (5.11) 

Furthermore using (4.33), we obtain from (5.6),  (5.7)  

i[ 2 3~ 3 
L(e)  = l n 2 -  - -  + - -  + r  4) (5.12) 

2~ 2 4~ 2 

for the quartic map. It is apparent that the perturbation theory is in 
accordance with the inequality (5.5). 

Concerning the polynomial maps (4.21), (4.22), and (4.23) the insertion 
of (4.25) and (4.27) into (5.8) yields 

~2 - '  g (e  3) (5.13) L ( e ; ~ / , ~ ' ) = l n 2 - - -  4 ~', + 
2rr 2 i 

Note, that to ~Y (e 2) the parameters ~i do not appear. 
We turn now to the evaluation of the correlation function. In the 

general case only corrections of first order are considered. Substituting into 
Eq. (2.8) the expansion (4.4) and 

1 +,folXPl(x)dx (5.14) Y = g  

we obtain to ~Y(e) the expression 

:2'(,<- 
}.o(x>.x 

1 1 ]Pl(x)dx + ~(IZ2) (5 .15)  + r - :  
We consider here the case when Po(x) is symmetric. Recalling that we 
assume both fo(X) and f(E, x) to be symmetric> it follows immediately that 
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the first integral in (5.15) vanishes for r > 0 and the second one turns out to 
be zero for any r value by applying (2.3). 

According to Eqs. (2.6), (4.16), (4.13) we can write 

e l (x  ) = P[(x)  + P~<(x) (5.16) 

where now P[(x)  is symmetric and P~C(x) is antisymmetric. Accordingly 
(5.15) leads to 

C(e,r)  = Co(r ) + r + eC~<(r) + ~(r (5.17) 

where 

f0'( 1) 2 = - eo(x)dx (5.18a) Co(~) ~o  x 

s = - P f ( x ) d x  (5.18b) of(C) 8~o x 

1 

The 8,0 character of C0(r ) and C[(r) is a natural consequence of the fact 
that fo(X) is doubly symmetric and that conjugation does not alter this 
feature (see Section 2). Notice that C~C(r) = 0 for r = 0 is a result which 
could not be foreseen. 

Let us consider the map (4.21)-(4.23). The unperturbed map is (4.21b) 
for which a correlation function was calculated by Grossmann and 
Thomae(5): 

C0(r ) = �89 (5.19) 

Using (4.16), (4.27), (4.28), (4.29), and (5.18) we get for n = 8, i.e., for the 
16th degree polynomial map 

C~(~; ,1") ~- - 8r0(2 -5o T] 1 -+" 2 -8.  T~ 2 -{- 5 '  2-13. T]3) (5.20a) 

C~'<(~;r) = 8 , , ( - 2  - 5 -  ;o + 5" 2-13. ~2 + 7 .2 -15 .  ~3) 

+8r2( 3" 2-9"  ~'1 -t- 5" 2 -12" ~'2 -{- 7" 2 -15" ~'3) 

+ 8~3.7" 2-17. ~3 (5.20b) 

Concerning the quartic map Oli = ~i = O, i > 1) the most striking 
feature of our finding for the first-order correction is that it extends only to 
one step. In this case we have carried out a second-order calculation, too, 
yielding the following correlation function: 

c (r  ~) = (~  + 2 - 7 .  r + ( - 2  - 5 .  r + 3 . 2  -7 - r 

+ 2-6 .  r 2 + G(e3) (5.21) 
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6. AN ITERATIVE APPROACH TO THE INVARIANT MEASURE. 
COMPARISON OF THEORETICAL AND NUMERICAL RESULTS 

In this section we introduce an effective numerical technique for 
computing stationary distribution functions. There are several approaches 
for calculating probability distribution functions. (5'13'2~ 22) For the invariant 
measure we propose a modified version of the functional iteration with the 
Frobenius-Perron operator (for the Frobenius-Perron operator see, e.g., 
Ref. 5). That  means we investigate the integrals of the distribution func- 
tions instead of the probability distributions themselves. If the invariant 
measure is unique and stable under perturbations then it can be reached 
from the initial function/z}~ = x by the iterative procedure 

~ > n ) ( x ) =  l . l . > n - 1 ) ( f l - l ( x ) ) - -  l J ~ > n - l ) ( f u - l ( x ) ) - t "  l (6.1) 

T h e  fixed point of (6.1) satisfies (2.5) and thus is the invariant measure 
~ f ( x ) .  The general form of the nth functional iterate is expressed as 

l~:") (x)  = I + ~,, ( - 1 ) A f a o 1 ( f a : 1 (  " " " ( f a : 1 ( X ) )  " " " ) )  (6.2) 
ao, " " " , a n -  1 ~ l ,u  

where 

n - I  

A = ~ 8ua,, 8uu = 1, ~u, = 0 (6.3) 
i=0 

The iteration method can be used not only numerically but analyti- 
cally as well if f - l ( x )  can be explicitly given. It can be easily seen that the 
method yields the correct exponents for the power law behavior near x = 1 
(i.e., 1 / k  if f (x )  has a kth order maximum, according to (3.2)) already from 
the first iteration on and near x = 0 [i.e., 1 / j k ,  see (3.6a)] already from the 
second iteration on, if j < k. 

We have applied the iteration method to compute the asymmetry 
number (5.7) for the quartie map (4.26). The result can be compared with 
that of our perturbation expansion 

1 e + 3c 2 +~y(~3)  (6 .4)  
M(e) = 2 2~r 

obtained with the help of (4.33). Figure 3 shows that the theoretical 
parabola fits well even for relatively large Icl values. 

As an example for polynomial maps we investigate the logistic map 

f L ( r , x )  = r x ( 1  - x )  (6.5) 

at parameter values r = 01,02, t~3 corresponding to the band splitting points 
I ~ 2, 2 ~ 4 and to the crisis point where the window associated with the 
period three orbit ends, respectively. These parameter values are 01 = 



M(E) 

0,9 

-O,8 

o,7 

o,6 

-o,5 01 ~ o,5 
/ 

/ 
J 

T0,4 
I 

Fig. 3. The asymmetry number M for quartic maps as a function of e measuring th 
deviation of the map from the logistic one. The solid curve represents values obtained in th 
iterative way, whereas the dotted line is the perturbative approximation (6.4). The points A, ][ 
and C are related to the period-two, period-four, and period-three chaos in the logistic cas~ 
respectively. Although the probability distribution is not symmetric at c = 0.9405 . . . .  th 
asymmetry number equals 1/2 there; see mark D. At E the quartic map does not contain 

quadratic term. 

Table h Values o! Parameters 
for the Map f ~  

Parameter 

- 0 .2592. . .  
'0~ 0 .1090. . .  

02 - -  3 . 8 5 . . .  • 10 -3 

'03 4 .769 . . .  x 10 -6 

~'1 0 .0729 . . .  

~2 - 3 .889 . . .  • 10 -4 

~'3 9 . 1 3 . . .  • 10 -8 
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3.67857351 . . . .  /o 2 = 3.592572184 . . . .  P3 = 3 .856800652 . . . ,  .< 10-~2) Fully 
developed chaos appears at these points in each of the bands for the 
second, fourth, and the third iterates of the map (6.5), respectively. Con- 
cerning the central band (i.e., the band containing the x = 1/2 point) the 
maps in question are symmetric and are polynomials of fourth, sixteenth, 
and eighth degree, respectively. By appropriate rescaling and shifting the 
coordinate system they can be brought to the form (4.21)-(4.23) and will be 
denoted by r(2) ~e(4) and ;(3) respectively, f (c2)(x)  is an example of the JCB ~ JCB, JCB 
quartic map (4.26) with e = -0.29559. The meaning of e that the slope of 
the map at the origin is 4(1 + e) can be kept for the higher degree 
polynomial maps, too, by choosing ~0 defined by (4.27) equal to unity. 
Then the other parameters introduced in (4.27) and (4.28) can be deter- 
mined with the help of (4.29a)-(4.29h). For the map f ( c ~ ( x )  the nonzero 
ones are as follows: e = -0.07127, 7/1 = - 0 . 0 1 0 5 6 ,  ~'1 = -  1.339 • 10 -4. 
Table I contains the corresponding values for r(4) JCB " 

Let us consider first the correlation function. It is apparent that the 
~ - s and ~ - s can be regarded as small parameters, and calculating up to 
second order in c, it is consistent to take into account only B~ in the O(~) 
correction and to take ~ = ~ = 0 in the terms of second order in E. It 
means that for r(3) and {.(4) we can apply to this accuracy a 6th degree JCB JCB 
polynomial. Introducing the notation 

C(q ' )  = C0(q" ) --~ ~ c(i)6.r,i (6.6) 
i 

the values of C (i) - s calculated with the help of (5.20a), (5.20b) and (5.21) 
are given in Table II. The results are in good agreement with the numerical 
experiment by Thomae and Grossmann. <I~ In particular, for the maps fc  (2) 
and r(4) jcB one can read off a value of about 0.01 (slightly larger for fc(~ )) for 
the correlation function at r = 1 from Fig. 5 in Ref. 10. 

Turning to the LCE, it is important that, according to (5.4), there is no 
O(~) correction. Concerning the second-order terms we can take again 

Table II. Parameters of the Correlation Function, the LCE-s, 
and the Values of L a 

C(0) C (i) C(2) ~ L 

f ~  0.0007 0.0113 0.0013 0.6876 0.6866 
f ~  0.0008 0.0097 0.0011 0.6890 0.6884 

f ~ )  0.0015 0.0098 0.0011 0.6886 0.6882 

f ~  2-10  -5 0.0023 0.0001 0.6928 0.6929 

aFor the definition of the functions f ~ ,  f ~ ,  and f ~  consult text. f ~ )  stands for the 
universal chaos function. 
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1"~i = ~ i  = 0 for the maps f(c~ ) and fc(~ and then (5.1 l) can be applied not 
only for f(c~ but for them as well. Moreover, it is consistent to use the 
expression (5.12) for L including the third-order term for f(c3B ) and f(c~, too, 
since the ~/i - s do not occur in second order in e, according to (5.13), and 
the O(e 2) terms which would contain a factor of ~'i are completely negligible 
as compared to the O(e 3) contribution. The results for )~ and L are given in 
Table II. Note that the LCE for the map (6.5) can be obtained by dividing 
the values in Table II by the number of bands, which are two, four, and 
three at 01, P2 and 03, respectively. Our values for the LCE can be 
compared at 01 with the result 0.342 and at P3 with the result (In2)(1 - 4 • 
10-4)/3 obtained by Kai and Tomita (18) and by Grebogi, Ott, and 
Yorke, (1~) respectively. For the sake of comparison our result at the latter 
point can be written as (ln2)(1 " 4 . 6  x 10-4)/3. 

Similarly the expression (6.4) for the asymmetry number M can be 
used consistently for f(c~ and fc(~, too, since the Hi - s do not contribute to 
O(e) and the other modifications due to the ~. - s and ~'i - s up to second 
order are completely negligible. The corresponding points are marked in 
Fig. 3. 

Following the central band of the map (6.5), one can find a 4Kth - 
degree polynomial map ~(2k~ acB (x) exhibiting fully developed chaos at the 
2 ~ - 1 ~ 2  k band splitting point. In the limit k +  oc f(c2k~(x) becomes the 
universal chaos function. (13'15'16'23) In the Feigenbaum space of functions (24) 
it lies on the purely repelling line; in fact, it is the mirror image of 
Feigenbaum's universal function go(X). Its LCE is the amplitude A in the 
Huberman-Rudnick  scaling law (19) X(k) = A / 2  k, k ~ oc, where X(k) is the 
LCE at the 2k-l--~ 2 k band splitting point. It is expected (and heuristic 
arguments can be given for it) that in the maps fc(2~)(x) the higher powers of 
(1 ~- 2x) occur with smaller prefactors (a tendency which has already been 
seen for k = 2). We assume that this remains the case for the universal 
chaos function and carry out the calculation again to second-order accu- 
racy with the help of a 6th degree polynomial map. Using the result (23~ that 
the slope of the universal chaos function at the origin is 2.94805 . . . .  one 
obtains e = -0.26299. By fitting the universal chaos function (13) with a 
parabola near its maximum, the value of a~ can be determined, which 
yields through (4.29h) ~t = 0.1112. Note that both e and ~l obtained in this 
way are close to their values at the 2--~ 4 band splitting point, which shows 
the consistency of our assumption. The different characteristics can be 
calculated from (5.20a), (5.20b), (5.21), (5.11), (5.12) and are given in Table 
II. The results for the LCE and for L can be compared with the numerical 
results by Chang and Wright. (13) They have found for the LCE the value 
0.6867, which within the accuracy of their computation, agrees with L (note 
that the quantity R used in Ref. 13 is L / l n 2  in our notation). 
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. INVESTIGATION OF THE MAP 1 - 1 2 x  - l l k  

As a further example for the application of the perturbation theory let 
us consider the map (3.10) rewritten as 

f(e,  x) -- 1 - 12x - I I 2 ~ + ~  

One can formally expand (7.1) as 

f(E,x) = 1 - ( 2 x -  1)211 + eln(2x - 1) 2 + ( c 2 / 2 ) ( l n ( 2 x -  1)2) 2 

(7.1) 

q 

(7.2) 

which has the form of (4.2) with fo(X) being again the logistic map (2.10) 
and 

f~(x) = - ( 2 x -  1)21n(2x- 1) 2 (7.3) 

Obviously the expansion (7.2) cannot be convergent when x ~ 1/2, 
i.e., in the vicinity of the maximum point of f (x)  and consequently one 
cannot hope that a direct application of the perturbation theory based on it 
can lead to meaningful results. The difficulty, however, can be overcome by 
exploiting the results of Section 3. To demonstrate how this works we 
consider Eq. (4.5) with k = 1 for the first correction to the invariant 
measure. The function Fl(x ) occurring there can be determined by using 
(7.3) and (A.3): 

1 (1-_____xx ) ' / 21n( l_  x) (7.4) F,(x) = 7 x 

Since fo(X) maps the region around x = 1/2 into the neighborhood of the 
point x = 1, Eq. (4.5) with k = 1 and with the functions (7.3) and (7.4) 
possesses the asymptotic solution 

1 (1  - x ) ' / Z l n ( 1  - x )  - / X ' l ( 1 / 2 ) ( 1  - x) '/2, x---~ 1 ( 7 . 5 )  
= 7 

It can then be easily seen that 

_ 1 ~ - l n x + I / ~ , ( 1 / 2 )  - 2 +  41n2]  ~-  (7.6) 

satisfies the same equation asymptotically near x = 0. Taking into account 
(4.23) we obtain 

~t(x)= ~ -  l + e  ~-/V1(1/2 ) -  1 + 2 1 n 2  

- i n  x + x o (7.7) 
2 ~ ; J 
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and 

I z ( x ) =  l - l - x )  t/2 1+r 

- L l n ( 1 - x ) + & ( r  ' 2  x ~ l  (7.8: 

while according to Eqs. (3.2), (3.4), and (3.7) the correct asymptotic 
behavior of the invariant measure for the map (7.1) to leading order in c i~, 

~ . 

A 

o,8 

0,7 

0,6 

- 1  i i - ~  J [ I J 

- o , 7 5 ~  

Oj  4 �84 

M(s 

Fig. 4. The asymmetry number M for maps f (e ,x )  = 1 - [ 2 x  - l[ 2(1+') as a function of ~. 
The solid curve corresponds to iteratively computed values, while the theoretical line (7.1 l) is 
dotted. The points A, B, and C represent the map (7.12), the pieeewise linear map, and the 
purely quartic map, respectively. 
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and 

/x(x) = 1 -  I 2Tr + c/Z'l(1/2)] ( 1 -  x)O-~)/2' x---~l (7.10) 

This means that the logarithms appearing in the perturbation calculation 
near x -- 0 and x = 1 should be exponentiated. Since we want to have a 
smooth function for the measure, the fitting of the corrected asymptotic 
solutions, valid for x ~ 0, x--> 1, to the solution in the inner part of the 
interval [0, 1] calculated from (4.5) necessitates some modification of the 
latter one. Concerning the first-order calculation discussed above, this 
modification would contain terms of ~(e  2) and smaller, and therefore with 
the accuracy we want to calculate is negligible. 

As an example we consider below the asymmetry number for which 
according to (5.7) the value of the invariant measure at x = 1/2 is needed. 
Solving numerically the equation for the first-order correction we find 

M(e) = 1/2 + c. 0 .0542-- .  + ~(E 2) (7.11) 

We computed M(e) by means of the iteration of (6.2), too, and drew the 
results on Fig. 4. Point A corresponds to the map 

f(-3/4,x) = 1 (12x-  ll) J/2 (7.12) 

the probability distribution of which can be given explicitly: 

P(-3/4,x) = 2(1 - x) (7.13) 

This can be checked by direct substitution into Eq. (2.4). The LCE for the 
map (7.12) is equal to 1/2. 

Finally, by substituting (7.11) into (5.9) the inequality 

X < ln2 - 0.00588 . . .  �9 s -t- ~(E 3) (7.14) 

is obtained for the Lyapunov characteristic exponent. 
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APPENDIX 

Assuming the expansions (4.2) and (4.3) for the map f(c,x) and thl 
invariant measure #(e, x), respectively, we calculate the explicit form of Eq 
(4.5) for the kth-order correction I~k(X ). Suppose that each correction/~k(x 
is analytic and consider the left-hand side of Eq. (4.1) 

t*(e, f ( e , x ) )  = I*o(fo(x) + Ef,(x)  + . . . )  

+etq(f0(x) + e f , (x )  + " . .  ) + . . .  

i = l  

= 1 .] 
.=o J .  (f0(x) j= 

= - - k A .  
n = 0  

(A.11 

where 

with the constraints 

T k ( x  ) =-- IXk(fo(X)) -- Fk( fo (X) ) (1  -- 6kO ) (A.21 

The function Fk(x  ) is given by 

k (nil, k) k 

Fk(X)  = -- E /~[~z(x) E I'[ ~ f~ ' ( fo l (x ) )  (A.3) 
n, l= 1 {ai} i=  t 

where the symbol ~,(,,z,k) /qa,} indicates the following summation: 

(n,l,k) k k -  1 1 

= • 2 " ' "  2 (A.4a) 
(a~} al = 0  a 2 = O  ak=O 

k k 

~ ,  ai= n, ~ ,  ia i= I (A.4b) 
i ~ l  i = 1  

We have already taken into account the second constraint to the extent thai 
we have put the possible upper limits of the summations over a i - s allowec 
by this constraint. Note that there is no ambiguity in (A.3) which branch ot 
the inverse of fo(x)  has to be used, since the f ( x )  - s are all symmetric. 

where the notation/,) ' l (x) = d ' l t j ( x ) / d x "  has been used. Writing 
OD 

1 E A . -  n! . 
11 . . . . .  i n ~  1 j = O  

and collecting in A, - s, n ~ k, the terms of kth order in e, after som~ 
rearrangements we obtain 

= dr (x) 
k = 0  
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Expanding the right-hand side of Eq. (4.1) one has 

bt(e,x) - tz(c, l - x)  = ~ ck(  l~k(X) -- ~k(1 -- X)) (A.5) 
k=0  

The comparison of (A.2) and (A.5) yields Eq. (4.5) with Fk(x  ) given by 
(a.3). 
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